Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3331, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637491

RESUMO

Ultralight dark photons constitute a well-motivated candidate for dark matter. A coherent electromagnetic wave is expected to be induced by dark photons when coupled with Standard-Model photons through kinetic mixing mechanism, and should be spatially correlated within the de Broglie wavelength of dark photons. Here we report the first search for correlated dark-photon signals using a long-baseline network of 15 atomic magnetometers, which are situated in two separated meter-scale shield rooms with a distance of about 1700 km. Both the network's multiple sensors and the shields large size significantly enhance the expected dark-photon electromagnetic signals, and long-baseline measurements confidently reduce many local noise sources. Using this network, we constrain the kinetic mixing coefficient of dark photon dark matter over the mass range 4.1 feV-2.1 peV, which represents the most stringent constraints derived from any terrestrial experiments operating over the aforementioned mass range. Our prospect indicates that future data releases may go beyond the astrophysical constraints from the cosmic microwave background and the plasma heating.

2.
Proc Natl Acad Sci U S A ; 121(17): e2315696121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640344

RESUMO

Quantum amplification enables the enhancement of weak signals and is of great importance for precision measurements, such as biomedical science and tests of fundamental symmetries. Here, we observe a previously unexplored magnetic amplification using dark noble-gas nuclear spins in the absence of pump light. Such dark spins exhibit remarkable coherence lasting up to 6 min and the resilience against the perturbations caused by overlapping alkali-metal gas. We demonstrate that the observed phenomenon, referred to as "dark spin amplification," significantly magnifies magnetic field signals by at least three orders of magnitude. As an immediate application, we showcase an ultrasensitive magnetometer capable of measuring subfemtotesla fields in a single 500-s measurement. Our approach is generic and can be applied to a wide range of noble-gas isotopes, and we discuss promising optimizations that could further improve the current signal amplification up to [Formula: see text] with [Formula: see text]Ne, [Formula: see text] with [Formula: see text]Xe, and [Formula: see text] with [Formula: see text]He. This work unlocks opportunities in precision measurements, including searches for ultralight dark matter with sensitivity well beyond the supernova-observation constraints.

3.
Nat Commun ; 15(1): 2924, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575565

RESUMO

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.


Assuntos
Fabaceae , Fixação de Nitrogênio , Fabaceae/microbiologia , Nodulação , Solo , Microbiologia do Solo , Simbiose , Arachis , Verduras , Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
4.
Sci Adv ; 9(1): eade0353, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608126

RESUMO

Quantum sensing provides sensitive tabletop tools to search for exotic spin-dependent interactions beyond the standard model, which have attracted great attention in theories and experiments. Here, we develop a technique based on Spin Amplifier for Particle PHysIcs REsearch (SAPPHIRE) to resonantly search for exotic interactions, specifically parity-odd spin-spin interactions. The present technique effectively amplifies exotic interaction fields by a factor of about 200 while being insensitive to spurious magnetic fields. Our studies, using such a quantum amplification technique, explore the parity-violation interactions mediated by a new vector boson in the challenging parameter space (force range between 3 mm and 1 km) and set the most stringent constraints on axial-vector electron-neutron couplings, substantially improving previous limits by five orders of magnitude. Moreover, our constraints on axial-vector couplings between nucleons reach into a hitherto unexplored parameter space. The present constraints complement the existing astrophysical and laboratory studies on potential standard model extensions.

5.
Phys Rev Lett ; 129(5): 051801, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960560

RESUMO

Searches for the axion and axionlike particles may hold the key to unlocking some of the deepest puzzles about our Universe, such as dark matter and dark energy. Here, we use the recently demonstrated spin-based amplifier to constrain such hypothetical particles within the well-motivated "axion window" (10 µeV-1 meV) through searching for an exotic dipole-dipole interaction between polarized electron and neutron spins. The key ingredient is the use of hyperpolarized long-lived ^{129}Xe nuclear spins as an amplifier for the pseudomagnetic field generated by the exotic interaction. Using such a spin sensor, we obtain a direct upper bound on the product of coupling constants g_{p}^{e}g_{p}^{n}. The spin-based amplifier technique can be extended to searches for a wide variety of hypothetical particles beyond the standard model.

6.
Phys Rev Lett ; 128(23): 233201, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749190

RESUMO

Detection of weak electromagnetic waves and hypothetical particles aided by quantum amplification is important for fundamental physics and applications. However, demonstrations of quantum amplification are still limited; in particular, the physics of quantum amplification is not fully explored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic quantum phenomena such as time crystals. Here we investigate the magnetic-field signal amplification by periodically driven ^{129}Xe spins and observe signal amplification at frequencies of transitions between Floquet spin states. This "Floquet amplification" allows us to simultaneously enhance and measure multiple magnetic fields with at least one order of magnitude improvement, offering the capability of femtotesla-level measurements. Our findings extend the physics of quantum amplification to Floquet spin systems and can be generalized to a wide variety of existing amplifiers, enabling a previously unexplored class of "Floquet spin amplifiers".

7.
J Am Chem Soc ; 144(17): 7881-7888, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439409

RESUMO

Understanding water dynamics and structure is an important topic in biological systems. It is generally held in the literature that the interfacial water of hydrated phospholipids is highly mobile, in fast exchange with the bulk water ranging from the nano- to femtosecond timescale. Although nuclear magnetic resonance (NMR) is a powerful tool for structural and dynamic studies, direct probing of interfacial water in hydrated phospholipids is formidably challenging due to the extreme population difference between bulk and interfacial water. We developed a novel 17O solid-state NMR technique in combination with an ultra-high-field magnet (35.2 T) to directly probe the functionally important interfacial water. By selectively suppressing the dominant bulk water signal, we observed two distinct water species in the headgroup region of hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayers for the first time. One water species denoted as "confined water" is chemically and dynamically different from the bulk water (∼0.17 ppm downfield and a slightly shorter spin-lattice relaxation time). Another water species denoted as "bound water" has severely restricted motion and a distinct chemical shift (∼12 ppm upfield). Additionally, the bulk water is not as "free" as pure water, resulting from the fast exchange with the water molecules that weakly and transiently interact with the lipid choline groups. These new discoveries clearly indicate the existence of the interfacial water molecules that are relatively stable over the NMR timescale (on the order of milliseconds), providing an opportunity to characterize water dynamics on the millisecond or slower timescale in biomacromolecules.


Assuntos
Dimiristoilfosfatidilcolina , Água , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fosfolipídeos/química , Água/química
8.
Sci Total Environ ; 827: 154338, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257752

RESUMO

Soil acidification along with base cations loss degrades soil quality and is a major environmental problem, especially in agroecosystems with extensive nitrogen (N) fertilization. So far, the rates of proton (H+) production and real soil acidification (loss of base cations) remain unclear in subtropical agricultural watersheds. To assess the current status and future risk of soil acidification in subtropical red soil region of China, a two-year monitoring was conducted in a typical agricultural watershed with upland, paddy fields, and orchards where high N fertilizers are applied (320 kg N ha-1 yr-1). H+ production, neutralization and base cations losses were quantified based on the inputs (rainwater, inflow of water, and fertilizer) and outputs (outflow of water, groundwater drainage, and plant uptake) of major elements (K+, Ca2+, Na+, Mg2+, Al3+, NH4+, NO3-, SO42-, Cl-, and H+). The result showed that total H+ production in the watershed was 5152 molc ha-1 yr-1. N transformation was the most important H+ source (68%), followed by excess plant uptake of cations (25%) and H+ deposition (7%). Base cations exchange and weathering of minerals (3842 molc ha-1 yr-1) dominated H+ neutralization, followed by SO42- adsorption (1081 molc ha-1 yr-1), while H+ and Al3+ leaching amounted to 431 molc ha-1 yr-1, only. These results state clearly that despite significant soil acidification, the acidification of surface waters is minor, implying that soils have buffered substantially the net H+ addition. As a result of soil buffering, there was abundant loss of base cations, whose rate is significantly higher than the previously reported weathering rate of minerals in red soils (3842 vs 230-1080 molc ha-1 yr-1). This suggests that the pool of exchangeable base cations is being depleted in the watershed, increasing the vulnerability of the watershed, and posing a serious threat to future recovery of soils from acidification.


Assuntos
Agricultura , Solo , Cátions , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Água
9.
Sci Adv ; 7(47): eabi9535, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788098

RESUMO

Development of new techniques to search for particles beyond the standard model is crucial for understanding the ultraviolet completion of particle physics. Several hypothetical particles are predicted to mediate exotic spin-dependent interactions between standard-model particles that may be accessible to laboratory experiments. However, laboratory searches are mostly conducted for static spin-dependent interactions, with a few experiments addressing spin- and velocity-dependent interactions. Here, we demonstrate a search for these interactions with a spin-based amplifier. Our technique uses hyperpolarized nuclear spins as an amplifier for pseudo-magnetic fields produced by exotic interactions by a factor of more than 100. Using this technique, we establish constraints on the spin- and velocity-dependent interactions between polarized neutrons and unpolarized nucleons for the force range of 0.03 to 100 meters, improving previous constraints by at least two orders of magnitude in partial force range. This technique can be further extended to investigate other exotic spin-dependent interactions.

10.
Nat Commun ; 12(1): 6281, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725347

RESUMO

The superradiant phase transition in thermal equilibrium is a fundamental concept bridging statistical physics and electrodynamics, which has never been observed in real physical systems since the first proposal in the 1970s. The existence of this phase transition in cavity quantum electrodynamics systems is still subject of ongoing debates due to the no-go theorem induced by the so-called A2 term. Moreover, experimental conditions to study this phase transition are hard to achieve with current accessible technology. Based on the platform of nuclear magnetic resonance, here we experimentally simulate the occurrence of an equilibrium superradiant phase transition beyond no-go theorem by introducing the antisqueezing effect. The mechanism relies on that the antisqueezing effect recovers the singularity of the ground state via exponentially enhancing the zero point fluctuation of system. The strongly entangled and squeezed Schrödinger cat states of spins are achieved experimentally in the superradiant phase, which may play an important role in fundamental tests of quantum theory and implementations of quantum metrology.

11.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33597242

RESUMO

The invention of the maser stimulated revolutionary technologies such as lasers and atomic clocks. Yet, realizations of masers are still limited; in particular, the physics of masers remains unexplored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic phenomena such as time crystals. Here, we investigate the Floquet system of periodically driven 129Xe gas under damping feedback and unexpectedly observe a multimode maser that oscillates at frequencies of transitions between Floquet states. Our findings extend maser techniques to Floquet systems and open avenues to probe Floquet phenomena unaffected by decoherence, enabling a previously unexplored class of maser sensors. As a first application, our maser offers the capability of measuring low-frequency (1 to 100 mHz) magnetic fields with subpicotesla-level sensitivity, which is substantially better than state-of-the-art magnetometers and can be applied to, for example, ultralight dark matter searches.

12.
Sci Rep ; 11(1): 672, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436795

RESUMO

Quantum metrology plays a fundamental role in many scientific areas. However, the complexity of engineering entangled probes and the external noise raise technological barriers for realizing the expected precision of the to-be-estimated parameter with given resources. Here, we address this problem by introducing adjustable controls into the encoding process and then utilizing a hybrid quantum-classical approach to automatically optimize the controls online. Our scheme does not require any complex or intractable off-line design, and it can inherently correct certain unitary errors during the learning procedure. We also report the first experimental demonstration of this promising scheme for the task of finding optimal probes for frequency estimation on a nuclear magnetic resonance (NMR) processor. The proposed scheme paves the way to experimentally auto-search optimal protocol for improving the metrology precision.

13.
Sci Bull (Beijing) ; 66(1): 23-28, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654308

RESUMO

An important task for quantum cloud computing is to make sure that there is a real quantum computer running, instead of classical simulation. Here we explore the applicability of a cryptographic verification scheme for verifying quantum cloud computing. We provided a theoretical extension and implemented the scheme on a 5-qubit NMR quantum processor in the laboratory and a 5-qubit and 16-qubit processors of the IBM quantum cloud. We found that the experimental results of the NMR processor can be verified by the scheme with about 1.4% error, after noise compensation by standard techniques. However, the fidelity of the IBM quantum cloud is currently too low to pass the test (about 42% error). This verification scheme shall become practical when servers claim to offer quantum-computing resources that can achieve quantum supremacy.

14.
RSC Adv ; 12(2): 772-776, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425121

RESUMO

A mesoporous ternary metal oxide (K-Cu-20TiO2) from a simple sol-gel method was prepared to catalyze heterogeneously the carboxylation reaction of various sodium arylsulfinates under atmospheric carbon dioxide. The catalyst showed excellent selectivity and good functional group tolerance to carboxylation recycle. The oxidation state of active copper(i) by characterization using FTIR, XRD, TG, XPS and TEM techniques proved to be efficacious to conduct atom economical reactions.

15.
J Magn Reson ; 316: 106757, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32535401

RESUMO

The tautomeric structure and chemistry of the histidine imidazole ring play active roles in many structurally and functionally important proteins and polypeptides. While in NMR spectroscopy histidine chemical shifts (e.g. 15N, 13C, and 1H) have been commonly used to characterize the tautomeric structure, hydrogen bonding, and torsion angles, homonuclear 15N scalar couplings in histidine have rarely been reported. Here, we propose double spin-echo sequences to compare the observed signals with and without a 90° pulse between the two spin-echo periods, such that their signal ratio as a function of the echo time solely depends on homonuclear scalar couplings, allowing for measuring weak homonuclear scalar couplings without influence from transverse dephasing effects, thus capable of revealing hydrogen-bond mediated 15N-15N J-couplings that can provide direct and definitive evidence for the formation of N…H…N hydrogen-bonding associated with the imidazole ring. We used two 13C,15N labeled histidine samples recrystallized from solutions at pH 6.3 and pH 11.0 to demonstrate the feasibility of this method and reveal the existence of a weak two-bond scalar coupling between the Nδ1 and Nε2 sites in the histidine imidazole ring in three tautomeric states and the presence of a hydrogen-bond mediated scalar coupling between the Nδ1 site in the imidazole ring and the backbone Nα site in the histidine neutral τ and π states. Our results demonstrate that weak 15N homonuclear scalar couplings can be measured even when their values are less than their corresponding intrinsic natural linewidths, thus providing direct and definitive evidence for the formation of N…H…N hydrogen bonding that is associated with the histidine imidazole ring.


Assuntos
Histidina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Ligação de Hidrogênio , Estrutura Molecular , Isótopos de Nitrogênio
16.
RSC Adv ; 10(50): 29712-29722, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518216

RESUMO

An efficient and convenient iridium(iii) catalyzed ortho-C-H bond amidation of weakly coordinating benzamides treated with readily available sulfonyl azides as the amino source has been described. In this transformation, ionic liquids represents an ideal reaction medium, giving rise to a broad range of amidation products under mild conditions in the open air. This protocol offers moderate to excellent chemical yields, exclusive regioselectivities, and good functional group tolerance.

17.
Phys Rev Lett ; 123(5): 050603, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491311

RESUMO

Correlations of fluctuations are the driving forces behind the dynamics and thermodynamics in quantum many-body systems. For qubits embedded in a quantum bath, the correlations in the bath are key to understanding and combating decoherence-a critical issue in quantum information technology. However, there is no systematic method for characterizing the many-body correlations in quantum baths beyond the second order or the Gaussian approximation. Here we present a scheme to characterize the correlations in a quantum bath to arbitrary order. The scheme employs a weak measurement of the bath via the projective measurement of a central system. The bath correlations, including both the "classical" and the "quantum" parts, can be reconstructed from the correlations of the measurement outputs. The possibility of full characterization of many-body correlations in a quantum bath forms the basis for optimizing quantum control against decoherence in realistic environments, for studying the quantum characteristics of baths, and for the quantum sensing of correlated clusters in quantum baths.

18.
Phys Rev Lett ; 122(9): 090504, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932514

RESUMO

It is difficult to calculate the energy levels and eigenstates of a large physical system on a classical computer because of the exponentially growing size of the Hilbert space. In this work, we experimentally demonstrate a quantum algorithm which could solve this problem via simulated resonant transitions. Using a four-qubit quantum simulator in which two qubits are used as ancillas for control and measurement, we obtain the energy spectrum of a 2-qubit low-energy effective Hamiltonian of the water molecule. The simulated transitions allow the state of the quantum simulator to transform and access large regions of the Hilbert space, including states that have no overlap with the initial state. Furthermore, we make use of this algorithm to efficiently prepare specific eigenstates on the simulator according to the measured eigenenergies.

19.
Sci Rep ; 9(1): 2505, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792409

RESUMO

Reports regarding the effects of long-term organic and inorganic fertilization on the quantity and quality of soil organic carbon (SOC), particularly in Vertisols, are scarce. In this study, we combined SOC physical fractionation with 13C NMR spectroscopy technology to investigate the effect of 34 years of continuous fertilization on the SOC physical fractions and its chemical composition of 0-20 cm soil layer in a Vertisol. This study consisted of six treatments: no fertilization (control), chemical nitrogen, phosphorus and potassium fertilizers (NPK), low and high amounts of straw with chemical fertilizers (NPKLS and NPKHS), and pig or cattle manure with chemical fertilizers (NPKPM and NPKCM). Over 34 years of continuous fertilization, the SOC sequestration rate was from 0.08 Mg C ha-1 yr-1 in the control treatment to 0.66 Mg C ha-1 yr-1 in the NPKCM treatment, which was linearly related with the C input (P < 0.01). Of the five SOC physical fractions, two silt plus clay fractions (S + C_M, S + C_mM) dominated 74-92% of SOC, while three POM fractions (cPOM fPOM and iPOM) were only 8-26%. The two manure application treatments significantly increased all the SOC physical fractions except for the silt plus clay fraction within macroaggregates (S + C_M) compared with NPK treatment (P < 0.05), which was dependent on the larger amount of C input. Also, the two manure application treatments increased the levels of alkyl C and aromatic C but decreased O-alkyl C (P < 0.05), whereas the straw application (NPKLS and NPKHS) had no impact on the C functional groups (P > 0.05). Overall, the combination of animal manure with inorganic fertilization could enhance the SOC sequestration and alter its quantity and quality in Vertisols.

20.
Sci Total Environ ; 660: 1029-1037, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743900

RESUMO

Manure application is widely recognized as a method of improving soil structure and soil fertility due to additional organic matter and nutrient inputs. However, the salinity of animal manure may have a detrimental effect on soil aggregation. The objective of this study was to determine the effects of long-term animal manure application on soil aggregation, binding agents (soil organic carbon, SOC and glomalin-related soil protein, GRSP), and dispersing agents (e.g., Na+) and their relationships based on nine long-term fertilization experiments (12 to 39 yr) across China. The two red soil experiments (Qiyang, QY and Jinxian, JX) and one paddy soil experiment in Jinxian (JX-P) were conducted in southern China (precipitation above 1200 mm yr-1), whereas the other six experiments were established in semi-humid or arid regions in China with precipitation in the range of 500-900 mm yr-1. Each experiment included three treatments as follows: no fertilization (Control), inorganic fertilizer (NP or NPK), and a combination of inorganic fertilizer and animal manure (NPM or NPKM). Long-term animal manure application not only significantly increased the biological binding agents (i.e., SOC and GRSP) in the nine experiments but also considerably increased the dispersing agents (i.e., exchangeable Na+) (P < 0.05), except for the paddy soil experiment. Consequently, soil aggregate stability increased after animal manure application in three experimental sites in southern China but not in the experimental sites in northern China. Aggregate stability had a positive relationship with SOC and GRSP in the experimental sites in southern China (P < 0.01) but a negative relationship with exchangeable Na+ in the experimental sites in northern China (P < 0.05). The Na+ accumulation in soils was negatively related to mean annual precipitation (P < 0.001). Our study demonstrates that the long-term application of animal manure may degrade soil structure via the Na+ accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...